National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Influence of selected agents on crystallization power of polylactide
Kurakin, Yuriy ; Přikryl, Radek (referee) ; Bálková, Radka (advisor)
The influence of seven additives on the crystallization ability of polylactide (PLA), melt flow index (MVR) and mechanical tensile properties was studied. Pressed plates with a thickness of 0.8 mm were tested. Selected additives added in amounts of 0.5 and 1.0% were as follows: talc, sodium benzoate, mixtures of organic salts with amorphous SiO2 and zinc stearate, metal salt, phosphate salt, and potassium salt of 5-dimethylsulfoisophthalate (LAK-301 - nucleating agent developed for PLA). Non-isothermal crystallization measurements were performed at different cooling rates (0.3; 0.5; 0.7; 1.0 and 1.5 ° C). All nucleation agents increased the MVR of PLA except talc; the largest increase (9-fold and 24-fold) was the addition of metal salt. The additives did not fundamentally change the mechanical properties. All samples were rather brittle (the most brittle with LAK-301), the modulus of elasticity was around 1.2 GPa for all samples, the strength of PLA was increased the most by the addition of 1% talc (by 12%) and the elongation at break was increased by organic salt with SiO2. All samples with nucleating agents content of 1% were amorphous (crystalline content did not exceed 2%). Thus, the addition of reagents did not support the crystallization process during rapid cooling, even in the case of LAK-301. However, LAK-301 was acting as an excellent nucleating agent at slow cooling rates (1.5 °C / min and below). The nucleation activity of the additives decreased in the following order: LAK-301, organic salt with zinc stearate, talc, organic salt modified with amorphous SiO2 and phosphate salt. Samples with sodium benzoate and metal salt were crystallizing on cooling in several steps and it was not possible to use the method of Dobrev and Gutzow to evaluate the nucleation activity.
Polyhydroxybutyrate modification by grafting of functional groups
Melčová, Veronika ; Tocháček, Jiří (referee) ; Přikryl, Radek (advisor)
Presented bachelor thesis deals with a characterization of the effect of chemical grafting on thermal and mechanical properties of poly(3-hydroxybutyrate). Two grafting methods were chosen, chlorination and fluorination of PHB. The aim of the theoretical part of the work was to create a complete literature review containing basic information about polyhydroxybutyrate and the latest scientific evidence about possibilities of chemical modification of this polymer. The experimental part describes the chemical treatment of the material itself, as well as preparation of samples for testing and performing the selected analysis. Chemically grafted polymers were subjected to thermogravimetric analysis to determine their thermal stability. Thermal behavior of materials was studied by differential scanning calorimetry. Also non-isothermal crystallization of samples was observed in order to evaluate the influence of the grafted halogen atom onto the nucleation activity of the polymer. Selected samples were also subjected to dynamic mechanical analysis and tensile test.
SStudy of crystalline structure of polyhydroxybutyrate and nucleating activity of selected additives
Sedláček, Zbyněk ; Tocháček, Jiří (referee) ; Bálková, Radka (advisor)
This diploma thesis deals with study of crystalline structure of polyhydroxybutyrate (PHB), which contains different types of additives for studying of their nucleation activity and which were prepared by mixing. It is about boronitrid (BN), sacharin, hydroxapatit, plasticizer Tegmer a tree types of talc. Crystal structure was analysed by differential scanning calorimetry and x-ray diffraction, supramolecular structure was observed by optical microscopy (polarized and confocal laser scanning). Nucleating activity was evaluated by isothermal and non-isothermal crystallization made on calorimeter and heated table of optical microscope. There is not influence of additives on crystallographic structure, but additives affects number and size of spherulites including crystal domains defects, which can have impact on final mechanical properties. BN and talcs react as nucleating agents, other additives during low and high cooling speeds (vc) inhibit nucleation and in middle cooling speeds are without effect. Nucleating activity is not evaluated by numerically, because decrease of crystallization temperature together with vc is not linear. Results of direct methods are based on picture analysis, which is great benefit for understanding of crystal behaviour of PHB.
Influence of selected agents on crystallization power of polylactide
Kurakin, Yuriy ; Přikryl, Radek (referee) ; Bálková, Radka (advisor)
The influence of seven additives on the crystallization ability of polylactide (PLA), melt flow index (MVR) and mechanical tensile properties was studied. Pressed plates with a thickness of 0.8 mm were tested. Selected additives added in amounts of 0.5 and 1.0% were as follows: talc, sodium benzoate, mixtures of organic salts with amorphous SiO2 and zinc stearate, metal salt, phosphate salt, and potassium salt of 5-dimethylsulfoisophthalate (LAK-301 - nucleating agent developed for PLA). Non-isothermal crystallization measurements were performed at different cooling rates (0.3; 0.5; 0.7; 1.0 and 1.5 ° C). All nucleation agents increased the MVR of PLA except talc; the largest increase (9-fold and 24-fold) was the addition of metal salt. The additives did not fundamentally change the mechanical properties. All samples were rather brittle (the most brittle with LAK-301), the modulus of elasticity was around 1.2 GPa for all samples, the strength of PLA was increased the most by the addition of 1% talc (by 12%) and the elongation at break was increased by organic salt with SiO2. All samples with nucleating agents content of 1% were amorphous (crystalline content did not exceed 2%). Thus, the addition of reagents did not support the crystallization process during rapid cooling, even in the case of LAK-301. However, LAK-301 was acting as an excellent nucleating agent at slow cooling rates (1.5 °C / min and below). The nucleation activity of the additives decreased in the following order: LAK-301, organic salt with zinc stearate, talc, organic salt modified with amorphous SiO2 and phosphate salt. Samples with sodium benzoate and metal salt were crystallizing on cooling in several steps and it was not possible to use the method of Dobrev and Gutzow to evaluate the nucleation activity.
SStudy of crystalline structure of polyhydroxybutyrate and nucleating activity of selected additives
Sedláček, Zbyněk ; Tocháček, Jiří (referee) ; Bálková, Radka (advisor)
This diploma thesis deals with study of crystalline structure of polyhydroxybutyrate (PHB), which contains different types of additives for studying of their nucleation activity and which were prepared by mixing. It is about boronitrid (BN), sacharin, hydroxapatit, plasticizer Tegmer a tree types of talc. Crystal structure was analysed by differential scanning calorimetry and x-ray diffraction, supramolecular structure was observed by optical microscopy (polarized and confocal laser scanning). Nucleating activity was evaluated by isothermal and non-isothermal crystallization made on calorimeter and heated table of optical microscope. There is not influence of additives on crystallographic structure, but additives affects number and size of spherulites including crystal domains defects, which can have impact on final mechanical properties. BN and talcs react as nucleating agents, other additives during low and high cooling speeds (vc) inhibit nucleation and in middle cooling speeds are without effect. Nucleating activity is not evaluated by numerically, because decrease of crystallization temperature together with vc is not linear. Results of direct methods are based on picture analysis, which is great benefit for understanding of crystal behaviour of PHB.
Polyhydroxybutyrate modification by grafting of functional groups
Melčová, Veronika ; Tocháček, Jiří (referee) ; Přikryl, Radek (advisor)
Presented bachelor thesis deals with a characterization of the effect of chemical grafting on thermal and mechanical properties of poly(3-hydroxybutyrate). Two grafting methods were chosen, chlorination and fluorination of PHB. The aim of the theoretical part of the work was to create a complete literature review containing basic information about polyhydroxybutyrate and the latest scientific evidence about possibilities of chemical modification of this polymer. The experimental part describes the chemical treatment of the material itself, as well as preparation of samples for testing and performing the selected analysis. Chemically grafted polymers were subjected to thermogravimetric analysis to determine their thermal stability. Thermal behavior of materials was studied by differential scanning calorimetry. Also non-isothermal crystallization of samples was observed in order to evaluate the influence of the grafted halogen atom onto the nucleation activity of the polymer. Selected samples were also subjected to dynamic mechanical analysis and tensile test.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.